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ON SHELAH'S COMPACTNESS OF 
CARDINALS* 

BY 

SHAI BEN-DAVID 

ABSTRACT 

We deal with the compactness property of cardinals presented by Shelah, who 
proved a compactness theorem for singular cardinals. We improve that result in 
eliminating axiom I there and show a new application of that theorem together 
with a straightforward proof of it for the special case discussed. We discuss 
compactness for regular cardinals and show some independence results: one of 
them, a part of which is due to A. Litman, is the independence from 
ZFC + GCH of the gap-one two cardinal problem for singular cardinals. 

w Preliminaries 

Let  us first review the  basic  no t ions  and  def ini t ions  of [7]. W e  dea l  with an 

a lgeb ra  U (a s t ruc ture  with a set of opera t ions ) ,  with a no t ion  of f reeness  which 

is a set F of  pairs  of suba lgebras .  Le t  ;t'2 be  a ca rd ina l  big enough  so that  U and  F 

are  e l e m e n t s  of  H(;(2) ( the family  of  sets  which are  he red i t a r i l y  of  ca rd ina l i ty  less 

than  X2) and  let M be  an expans ion  of the  m o d e l  (H()r E, =, F, U) which has 

S k o l e m  funct ions.  W e  d e n o t e  by  Xo the  ca rd ina l i ty  of the  set of o p e r a t i o n s  in U, 

and  by  X~, the  ca rd ina l i ty  of  the  set of  re la t ions  and  funct ions  we a d d e d  to get  M ;  

we assume Xo =< X~ = X2. A,  B, C, D d e n o t e  suba lgebras  (we cons ide r  O as a 

s uba lgeb ra  too) ,  M, N, d e n o t e  e l e m e n t a r y  s u b m o d e l s  of M which are  also 

e l e m e n t s  of  M, N < M will mean  N < M (e l emen ta ry  submode l )  and  N E I M I .  

W e  say that  A/B is f ree (or  A is free ove r  B )  if ( A , B ) E  F and A is f ree  if 

(A,f~)EF. A /B  is A-free  if for  every  N, [ ]N] I<A and A,B, EIN  1 impl ies  

A n N/B is free.  

t This paper is based on the author's M.Sc. thesis written at The Hebrew University under the 
supervision of Prof. Shelah, to whom he expresses his deep gratitude. 
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THE THEOREM. The theorem we prove is: If U satisfies the following axioms 

II-VII and h is a singular cardinal, then every A-free A, whose cardinality is A, is 

free. (We include axiom I only to keep the notation like that of [7].) 

SET OF AXIOMS. A x I * . I f A  is free o v e r B  a n d B E N ,  t h e n A  n N i s f r e e  

over B. 

Ax II. A is free over B i f f A U B  is free over B ; a n d a l w a y s B  is free 

over B. 

Ax III. If A is free over B, and B is free over C, where A D B D C, then A is 

free over C. 

Ax IV. If A = U,<~A,, A, (i < A) increasing and continuous, AoC B and for 

i < j < A, A~/A~ U B is free and h is a regular cardinal, then A is free over B. 

Ax V. S u p p o s e D E M ,  C ~ E M ( i < a ) , B C D ,  A C D ,  D C C 0 ,  andC,  is 

increasing. If A is free over (Co A M ) U B  and C~ A M  is free over 

(Co n M) U D for i < a, then A is free over [(U,<~C~) n M] U B. 

RE~ARK. (1) Note that not necessarily A , B  E M. 

(2) Instead of D C Co we can require M n (D - Co) _c B (just use C~ U D 

instead of C~). We shall use this version freely. 

Ax VI. If A is free over B U C, and {A, B, C} C N, then A n N is free over 

(B nN)U C. 
Ax VII. If A is free over B, and {A, B} C N, then A is free over (A n N) U B. 

The basic definition in the proof is 

DzFIr~mOr~ 1. We define when A is P~(~)-free over B (or A / B  is P~()t)- 

free), where a is an ordinal, )t usually a regular cardinal, but sometimes a limit 

ordinal. We define by induction on a :  

(1) a = 0. Any pair A / B  is eo(X)-free. 

(2) a = 8 a limit ordinal. The pair A / B  is P8 (~)-free iff for every /3 < a, 

A / B  is P~ ()t)-free. 

(3) a =/3 + 1. The pair A / B  is P~(,~)-free if it has a P~ ()t )-decomposition. A 

P~ (A )-decomposition of A / B  is a sequence A, (i < 8) such that: 

(i) A, is increasing and continuous, U,<sA~ C A  andcof8  =cf) t ,  A o C B .  

(ii) For i>_j >8, Aj+I is P~ ()t )-free over A, UB. 

(iii) A is free over U,<sA, UB.  

(iv) A,+I is free over B (for i < 8). 

(v) For i < j < 8, Ai.~ is free over m,+l U n. 

REr~ARK. (1) Notice that the definition depends on U and F only (and not 

on M). 
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(2) Note then when col(8)  = cof(y) ,  A / B  is Pa(8)-free iff it is P~(y)-free. 

(3) Notice that if we remove the restriction in (v) that A / A j  U B is free only 

for successor ji, we get that Po(A)-freeness (for a > 0 )  implies freeness (At). 

Claim (0.1) below implies Ui<sA~/B is free and Axiom III with condition (iii) 

here implies A / B  is free. So if we know A / B  is P~(A)-free and we want to 

assure it is free, the only places we lack information is over limit A,'s, where all 

we have is Po (A)-freeness, therefore the bigger a is, the stronger the notion of 

P~ (A)-freeness becomes. 

(4) In fact, we use in the proof only PI(A) and P,~(A)-freeness. 

The following technical lemmas from [7] will be used freely in the course of 

this proof: 

CLAIM 0.1. IrA,  (i < a)  is increasing and continuous, Ao is free over B, and 

A,+I is free over A, U B (for i < a), then U~<~A, is free over B. 

CLAIr, t 0.2. I f  I A I  = A, A is a regular cardinal bigger than X,, A = 

U,< ,A , (Ai :  i < A) increasing and continuous for every i IA, I< A, then A /B is 

free iff there is a closed and unbounded set S C A such that for any i, ] E S, i < ], 

A , /B  and Aj/A~ U B are free. 

LEMMA 0.3. If  A / B  O C is Pa(A)-free (A is a regular caidinal) and 

{A,B,C,A,  ot}Uof C_N and A A N  is an initial segment of A, then 

A A N / B ( B  A N ) U C  is P~(8*)-free where 8 * =  A A N =  the order type of 

A O N = the first ordinal not in N. 

LEMMA 0.4. S u p p o s e D ~ M ,  C, E M  ( i < y )  andBC_D,  A C D ,  D C C o ,  

and C~ is increasing, A a regular cardinal. 

I f  A is P~ (A)-free over (Co n M)  U B and C, O M is free over (Co n M)  U D, 

then A is P~(A )-free over (U,<~Ci A M ) U B .  

LEMMA 0.5. SupposeA isregular, A >X~, a n d a  UA U { A , B , a , A } C N .  I r A  

is P, (A)-free over B, then A is P, (A)-free over (A n N)  U B. 

(The last three lemmas say that the notion of P,  (A)-freeness satisfies variants 

of Axioms VI, V, VII respectively.) 

w The proof 

The proof of the theorem in [7] is divided into two steps; the first is lemma 1.8 

there, and says that under the assumptions of the theorem (IA I = A, A singular 

and A / B  is A-free) A / B  is P~(cofA)-free for every /3-< A; the second step 
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(lemma 1.10 there) shows that every Po, (A)-free pair is free (this is the case when 

X~ =< no, otherwise we need more assumptions on U, see [7] for details). The 

proof of lemma 1.10 there does not involve Axiom I, so in order to eliminate it 

we have to prove only the first step. 

LEMMA 1.1. Let (N~ : i < g ) be an increasing (in the order < ) and continuous 

sequence such that {A,B, l z }Ul zCN~.  I[ ( A O N ~ : i < l z )  is a Po(g)- 

decomposition o[ A / B  then A / B  is P, (l~ )-[ree [or every a such that a + 1 C_ N~ [or 

every i. 

PROOF. By induction on a. Clearly it is enough to handle a =/3 + 1. Let us 

assume A / B  is Po(g)-free and we show (A O N ~ : i < / z )  is a P~(/~)- 

decomposition of A/B.  The demands (i), (iii), (iv), (v) in the definition of such a 

decomposition do not depend on/3, so they hold by the assumption that it is a 

Po(/.~)-decomposition. A / B  is P~(/~)-free, so by Lemma 0.5 (with N~ replacing 

N) A / ( A  n N~) U B is also Po(~)-free. Now we use Lemma 0.3 as A, N~ C Ni+~, 

A NN~ E Ni+l, and we get that A AN~§ AN~ ) UB is Po(p.)-free, so also 

have (ii). If a, g e" No we get the P,~ (g)-freeness of A O Nj§ n No) U B from 

the conditions (i) and (iv) is the given Po(g)-decomposition. 

SCHEMA OF THE PROOF. Having this lemma we will complete the proof after 

we find a Po(cof A)-decomposition of the above type. In order to get such a de- 

composition, given A, B, we define some filters on SK (A) = {a : a C_ A, l a I = K }. 

Using these filters we will define for C E S , ( A )  "the degree of C " ;  the needed 

decomposition will be built of algebras with degree oo. The definition of the 

degree will assure such algebras are free over B (so we handle condition (iv)), 

Lemma 1.6 will show that for such C's there are many (relative to some filter) 

D ' s  such that D / B  U C is free, and using them to get the next C we handle 

condition (v). Lemma 1.5 shows we can get many C's with degree ~ and 

C = A n N for some N, as needed in Lemma 1.1, and in Lemma 1.7 we finally 

build the desired decomposition using the assumptions of the theorem. 

Let A, B be fixed, IA I = A ; let/z denote regular cardinals and X, -<- K < A. 

DEFIr~mON 2. For any set a and K --<la[, let SK(a)={bC_a, lbr=K}. 

DEFINITION 3. (A) An expansion M* of M is called a K-expansion if it is an 

expansion by -< r relations and functions, and A,B,  i (i =< K) are individual 

constants of M*. 

(B) Ni (i < a )  is an M*-sequence if it is increasing (by < )  and continuous 

and for every i <  a, (Nj :j_-< i ) ~  N~+~ and N~ < M * .  
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(C) For any K <A (and p. =<K) let E . ( A )  be the filter generated by sets 

S C S , ( A )  called its generators such that, for some K-expansion M* of M, 

where 

$. ( M * )  = IA 
L 

s = s . ( M * )  

O I,.,l N~ "N~(i < / z )  is an M*-sequence, IIN~ I[ = K, /.t < K § } 
i < a  

(so every expansion defines a generator of the filter). 

(D) E, (A) is generated similarly, except that the length of the M sequences 

can be any ordinal < K§ we denote its generators S, (M*) .  

(E) E ~ ( A )  is generated similarly, except that we allow only M*-sequences 

of a fixed length--/z. 

(F) E"  (A) is generated like E~ (A), but here the length of the sequence can 

be any a < K + such that co fa  =/x. 

LEMMA 1.2. All  the filters defined above are K +-complete (i.e. the intersection 

of less than K + elements of the filter is in the filter). 

PROOF. It is enough to show it for intersections of generators. Every 

generator is defined by a K-expansion of Mr. Given less than K + such expansions 

we can define a common expansion of all of them that will still be a K-expansion. 

The generator defined by such a common expansion will be included in the 

intersection, as every elementary submodel of this expansion will be an 

elementary submodel of every model in the given set of expansions, so the 

intersection belongs to the filter. 

LEMMA 1.3. For regular K (recall K stands for cardinals satisfying X~ <- K < A) 

the filter E~(A  ) is generated also by the sets of the [orm 

S * ( M )  = {A N I..J N, : <N~ : i < K ) i s a n M *  sequence and I[ Ni [l < r }, 

where M* is a x1-expansion of  M. 

PROOF. This is lemma 3.3 in [7] so we omit the proof here. 

DEFIr~mO~. (A) The pair A / B  is E-free (E, or E ( A ) ,  is a filter over a family 

of subsets of A )  if {C: C E  t.3E, C / B  is free}E E. 

(B) We can replace "f ree"  by any other property. 

REMARK. Obvious monotonicity results hold. 



Vol. 31, 1 9 7 8  COMPACTNESS  OF CARDINALS 39 

DEFINITION 5. (A) For  every /z -< r < A, C ~ S, (A),  t A I = A, and B, and 

filter E over S , (A) ,  we define the rank R ( C , E )  as an ordinal or ~, so that 

(1) R(C, E )  => a + 1 if[ C/B is free and {D ~ S, (A): C C_ D, D / C  U B is free 

and R(D, E )  --- tx } ~ ~ mod E. 

(2) R(C,E)_-_-8 ( 8 = 0  or 8 limit) iff C/B is free and a < 8  implies 

R(C, E ) - a  (more exactly, we should write R(C, E ; A / B ) ) .  

(a)  R ( A / B , E )  = sup{R(C,E) ;  C E SK(A)}. 

(C) R~(C)  = R ( C , E ~ )  and R~ = R~(A /B)  = R(A /B ,E~) ;  R~, R~ are de- 

fined similarly. 

REMARK 1.4. For  such a filter E and C ~ S~(A), R ( C , E )  = oo implies 

{D : D E SK (A ), C C_ D, D / C  O B free, R(D, E )  = ~} ~ O mod E, 

for as SK (A)  is a set, the range of the degree function on its elements is bounded 

for such a bound ao and C E S~ (A),  R(C, E )  = ~ iff R(C, E )  _--- o~0, so the remark 

follows from the definition. 

LEMMA 1.5. Let K* < A, i f A / B  is not E~-nonfree (i.e. {C: C E S , (A) ,  C/B 

is not free} ~ E ~ )  then for every I~ <= r and every r-expansion M*, for every 

S~ E E~ ++(A ) and every S2 E E ~ (A ) there is C ~ $2 so that R?(C)  = oo and C is of 

the form C = D O N for D satisfying : D ~ S~, D E N, D /B  is free, and N < M*, 

IINll--- r.  
(Intuitively the lemma claims that if A has many subalgebras of cardinality r § 

free over B then it has many subalgebras of cardinality r and degree oo.) 

PROOF. To each C ~  S (A)  we attach a K-expansion M*,  as follows: If 

R~ (c) = oo or Ca is not free, we choose an arbitrary M*, otherwise CB is free and 

yet its degree has not reached oo so there is a reason that stopped it from 

climbing; that means there is a set belonging to E~ and for every element of this 

set, D, which contains C, D/C  U B is not free. This set includes a generator of 

E~ and we choose as M* the r -expansion that defines this generator.  

Let M 2 be the expansion which defines the generator of E~ included in Sz, 

and let M* be a K-expansion expanding both M* and M 2 having the relations 

P~={(c ,N) :C~S~(A) ,  N < M * }  and P z = { N : N < M 2 } ;  let S be 

{D ~ S,.(A): D /B  is free}, S ~ O mod E ~ so its intersection with every element 

of this filter is not empty, S~ ~ E~ ++ and by Lemma 1.3 $*+ (M § is also in this 

filter, so there is D ~ S  n S~AS**(M+). Such a D has the form D = 

A n U,<,+ N~ for (N~ : i < K § an M§ such that IIN, II r (by restricting 

ourselves to a tail of this sequence); we can assume that for every i, II N, II = ~ and 

r c_ I/v~ I. We denote  A * = D n N~. 
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For each C E S . (A)  n IN, I and for each j < i the sentence "There exists a 

model N~ such that N{ < M*, I Nj I _c I N~ I and II N{ [I = x "  is of first order in the 

language of M § it is true in M § and as Nj§ < M § and ~ E I~+~ I it is true also 

in Nj+~. Such N{ will be even included in Nj§ because ~+~ is an elementray 

submodel of a K-expansion and [IN~ [I =< K (in M there are Skolem functions, so 

there is a function attaching to each element a one-one function from its 

cardinality onto it; as K _C N, N includes also the ranges of those cardinality 

functions with domain K). Hence for each limit 8 and each C ~ S . ( A )  n N8 we 

get N8 < M *  and so each initial segment of (Nj:i  < j  < K § j limit) is an M* 

sequence (for C E N~) and for 8 < i, 8 a limit of limit ordinals, cof8 = #, 

A *  E S . ( M , ) .  D / B  is free, so by Lemma 1.2 there exists S Cx closed and 

unbounded in r § such that for i, j E S, i C j, A */A * n B and A */B are free. Let 

W be the stationary set of elements of S which are limit of limits and has 

cofinality ~. i E W implies R~(A * - j) - ~, because otherwise taking an increasing 

sequence in (i,: n < to), io = i, i, ~ W for every n, we get A*~.+, E S~tM * ~ for K~ Ai.] 

every n, and, as A*.+,~. is free, R~ (A *+,) < R~ (A *) so (R~(A*): n <oJ)  is a 

decreasing sequence of ordinals, a contradiction. As every elementary submodel 

of M + is also an elementary submodel of M 2, M§ are also M 2- 

sequences, so for 8 with cofinality /z, A* E $2, and if we take N~ such that 

D U N~ and i ~ W, then /V~, D, N~ O D satisfies the demands of the lemma 

standing for N, D and C respectively. 

LEMMA 1.6. For regular K > X~ i[ A / B  is not E'.-nonfree, then [or every 

regular if smaller than r and for every C such that R ~ ( C )  = oo, {D E S.(A):  (if 

D / B  is free then D / B  U C is [ree)}E E~. That means that if C ~ S~(A ) and 

R ~ ( C )  = ~ then there are many D ' s  in S~(A ) which are free over B U C. 

PROOF. First note that for C E S~(A), {D E S~(A): C C D} belongs to each 

of the filters we have defined on S~ (A) because it always contains the generator 

defined by a if-expansion which has the elements of C as individual constants. 

Therefore (by Remark 1.4), given Co, Ct E S~(A) satisfying R~(Co)=  ~ and 

CoCCi,  there is D E S , ( A )  such that C1C_D, R.-'-(D) = oo and D / B  OCo is 

free. Let g be a function choosing such a D for every pair (Co, C,). Let M § be a 

K-expansion having g and Skolem functions for M and P = {N: N < M} and C 

and a function attaching to every set x its closer to an elementary submodel for 

Mr. We will show that for every D E S ( M  § the freeness of D / B  implies the 

freeness of D / B  U C. Every D E S~(M*) has the form D = A O U,<~Ni, where 

(N~: i < t~) is an M%sequence, cofot = r for each i. By Claim 1.2, if D / B  is free 

there is S CK closed and unbounded there such that i < j ~ S  ::> 
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A n Nfl(A n Ni)U B is free and so is A n Nt/B. We define by induction on 

n < to sequences (Mr,: n < to), ('i.: n < to) and (CR: n < to), each (:7. is in S~(A) 

and has degree 00 (by E~) ,  the MR's are models of cardinality if, M, < M.+I < M 

and the (i.: n < to) is an increasing sequence of ordinals in S. Let Co be the given 

C. Mr, is the closer of M._~ U C. U {i.-~, CR-~,Nt. ,,M,_I} to an elementary 

submodel of M, C,+~ is g(C., IMR l n A )  and i~ is an ordinal high enough in S to 

get Nj. _-> M. (there is such iR as JIM, [I = ff and (N~:i < ct) is an increasing 

sequence of length of cofinality r > ~). 

Let i,. be UR<.~i., C., = U .< , ,C .  and M,. = U.<~M. .  It follows that Nt. _~ 

Co,=IM.,IOA.  

To show D / B  U C is free we will use Axiom III and show it in stages: 

(1) D/(A  O N~.) U B is free, because (A N Nj : j  E S,j < io,) is an increasing 

and continuous (as S is closed) sequence, its union is D (as S is unbounded) and 

its elements are free over (A n N , )  U B and over its union with their predeces- 

sors, so we finish by Claim 1.1. 

(2) C/C U B  is free. For each i, Ct/B is free (R,~(Ct)=oo) Ct/C UB, 

so by Ax II, C t U B / C U B = C t U C U B / C U B  is free as well as 

C.+~/C. U (C U B)C.+JC. U B (for every n), so by Claim 1.1 we finish. 

(3) A n NJ(C,. o N~o) U B is free. 

PROOF. A N NJB is free as ioES. A N N ,  EM~, so by Ax VIII 

A n N J ( A  N N~ n Mo.) U B is free, which is what we wanted. Let us from now 

to the end of this proof denote  A n Nt. by At.. 

(4) AJCO, U B is free. Here  we will use Ax V. We will put A~.'s instead of 

the C. 's  in the axiom, A~ instead of the D there, M~ instead of M, A~ instead of 

A, and B here will take the place of B in the axiom. Let us check the conditions 

of the axiom, A/(Co n M) U B becomes AJ(C~ n N~) U B and we saw in (3) 

that it is free. Ct n M/(Co n M) u D becomes At. n M~/A~ and as A~./A~ is free 

for every n and At., A~ E Mo. we get the desired freeness using Axiom VI (with 

B = O, C = A~, A = A~, N = M,o). The conclusion of Ax V will give us the 

desired freeness. 

(5) For every n, A~.,,/(At. U Co,) U B is free. The proof here is like the proof 

of (4). We start with the freeness of A,.+,/At. U B which is assured by the 

demand that every i. belongs to S. We then use Ax VII (with M.  as N there) and 

get A,.§ U (A,.§ n M.)  = At.+l/Ai. U (C~ n Nt.+,) U B is free and then use 

Ax V just like we did in (4). 

(6) A J C  U B is free. This is an immediate consequence of (4) and (5) using 

Claim 1.1. 
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Collecting all these results we have the freeness of D/Ai .  U B, A~. O B/C.  U 

B, and C. O B / C O B  so by Ax III, D / C U B  is free. 

LEMMA 1.7. If  t A I = A  is singular, and {K:A/B  is not E~-nonfree} is 
unbounded in A, and a < h, then A / B  has a Po(cof h )-decomposition of the form 

(A O N, : i < cof h) where (N~ : i < cof it ) is increasing (in the order < ) and 

continuous and for every i < O, a O {A, B, cof h ) U cof h --< N,. (Note that i rA /B  is 

A-free then for every K < h A / B  is not E~:-nonfree.) 

PROOF. We build (N~ : i < col h ) by induction on i. Let A = {aa : a < A }, and 

(K~: i < cof it ) is an increasing sequence of cardinals bigger than X~, its limit is it, 
K+ 

and for every i A / B  is not E : -nonfree.  At each step i + 1 we want that 
Ki 

I A O Ni+~ [ = r,§ and R2,:I(A O N~+~) = oo. For i = 0 let No = O, and for i limit 

N~=Ui<,N~. For i = j + l  let C be (1VsnA)O{aa:a<K,}  and So will be 

{D E S.~(A): a < j  ~ (D/B free ::> D / B  U(A  n Na§ is free)}, as the degree 

of every A n N~§ (a < i )  is o~ (relative to the suitable filter of course) and A is 

not E." Z-nonfree. We can use Lemma 1.6 and the K ~+-completeness of E ~',* to get 

So ~ E~:. 
Let M* of an expansion of M be (N,:  a < i) and the ordinals smaller than K, 

(it is a K,-expansion); S~ = So n {A O N : N  < M*,  [[NI[--- K~} belongs to E . ' :  (as 

an intersection of two elements of the filter). 

Let $2 = {G : E E S., (A),  G _D C}, $2 belongs to E.','. Now using Lemma 1.5 (K, 

stands for x there) we get N and D such that R:,,(D n N) = 0% D E N, N < M*, 

D/B  is free, IINII=K,, DCS~,  and D N N ~ . S 2  so D O N = A N N '  for 

N ' < M * .  Let N ~ = N ' A N ;  it follows that N ~ < M * ,  R~, ,(AAN,)=oo so 

A A N , / B  is free, D E S o  is free over B and D/(A  ON~+~)UB is free (as 

D C So). Clearly D / B  U (A O N~+~) is free for every a < j. Also every N.+~ is an 

element of N O N '  (it is an individual constant), so we can use Ax VI to get the 

freeness of A O ~ / B  U (A n No+ O. Now we choose j such that cofit U a < xj 

and the desired sequence of models will be (N',:i < cofi t) ,  where N~ = No, 

N; = N~§ 

w An application: order types which are not a union of 1% well orderings 

We give here one more application of the compactness theorem (there are 

many applications in [7]). This is an answer to a question of Baumgartner  [2], 

and for the theorem used here we show a much simpler proof than the proof of 

the compactness theorem. 

In [2] Baumgartner  deals with order  types that cannot be represented as a 
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union of no well orderings. He presents a subclass of those orders: The class of all 

such order types with the property that every uncountable subtype of ~o contains 

a copy of to1. He denotes this subclass 04 and asks (problem 1 there) if there exist 

types in 04 whose cardinality is a singular cardinal but every subtype of smaller 

cardinality can be represented as a countable union of well orderings. 

We give a negative answer by showing that the existence of such a type is 

equivalent to a certain incompactness property (in its cardinality) and that the 

compactness theorem holds for this property. 

Let N be the class of all continuous functions from successor countable 

cardinals to the ordinals ff  ~ N ~ Dora f = a + 1, a countable). An order < is 

defined on N;  g < f  iff f ~ g  or for the first /3 such that f( /3)#g(/3),  
g(/3)<f( /3) .  Given S C_N, T(S) is the tree generated by S ( T ( S ) = { f E  

N :( : lg E S)(f C_ g)} with the inclusion as the order). Theorem 2.1 in [2] states 

that every order type ~ without a decreasing sequence of length to1 can be 

represented as S C N (with the order < ) such that in T(S) there is no path of 

length to~. (In particular this holds for types which can be represented as a union 

of n0 well orderings and for types in cb4.) The proof is by well orderings q~, and by 

defining by induction f:  9 ~ N, an embedding. 

NOTATION. A branch in a tree is the set of predecessors of a limit node. 

THEOREM 2.1. For S C N such that in T(S) there is no path of length to1, the 

order type of ( S, < ) can be represented as a union of I~o well orderings iff there is a 

function that attaches to every branch of T(S)  a final segment of it, such that for 
incomparable branches the segments are disjoined. 

PROOF. We prove the if part by showing that for some /z, c o f 0 t ) =  > A = 

] T(S)I,  (S, < ) can be embedded in ('<g, <)  (that is the set of finite sequences of 

ordinals in/x with the order defined on N). This is enough as "</x = I,.J n<,'/z and 

< well orders "/z (the sequence of length n is/~) for every n. The proof is by 

induction of A = l T(S)I. For A _-< n0 (S, <)  is countable and as ('~ <)  is dense it 

can be embedded there. Assuming our claim holds for cardinals smaller than A 

we represent T(S) as a union of an increasing and continuous sequence of trees 

of smaller cardinality each of which contains all initial segments of its branches 

T(S) = [.]i<A Ti. When a tree with a function F choosing disjoint final segments 

for its branches is presented as T = O T~ (increasing continuous and I T, I <ITI  
for every i), there is a closed and unbounded set C in I TI such that for a E C 

and/3 > a, T~ has a function F a choosing disjoint final segments of its branches 

which are all disjoint to every branch in To. (This is not hard to see but just the 
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same will be proved later (3.6).) Thus we represent T(S) as T(S) = UiEc T~ for 

such (7. 

By induction on i we build functions ~ : T~ ---, ">/z such that ] < i implies ~ C_ 

and each fi is order  preserving; Ui<~/~ will be the desired embedding of T(S). 
We assume ~ is defined andde f ine  fi+l. By induction on the height of the 

vertices in T~+I let us show that for every one of them there is a first element in 

the cut it defines in (T~, <):  If t E T~+, is a limit, F'+~(t) is defined, its first element 

belongs to T,+, (as the Tj's contain initial segments of their branches), does not 

belong to T, (this is the demand on the F ~'s) and thus defines the same cut as t 

defines, and as the first element of F~+~(t) has smaller height than t the induction 

hypothesis assures the cut has a first element. For  t of height a > /3s^(a)  ~ T~ 
(where the height of s is a ) ;  if sl~ T, then s and t define the same cut, so the 

induction hypothesis takes care. So assume s E T,, if for every a > fls v(a) ~ T~ 
then s is the first element in the cut it defines, otherwise let y be the first ordinal 

such that s^(y) E T,, then s ^(3') is the first element in the cut. In order  to define 

/,+~ we show that given a set of elements of T~+I which all define the same cut in 

T, we can embed them (in an order  preserving way) in ">/z such that their images 

will define the same cut relative to ~(T~). Let a be the first element in T~ above 

the cut. As I T~ I < A and cof(/z) > A there exists a first a < ;t such that /3 => a 

implies ~(a)^(fl)~(T~), the tree of vertices bigger (in ">/x) than ~(a)^(t~) is 

isomorphic to ">/.~, and as the cardinality of the set we want to embed is smaller 

than A the induction hypothesis assures us we can imbed it there (clearly all the 

vertices in this tree define the same cut in E(T, ) ,  the cut whose first element is 
~(a)) .  

Proo[o[the "only if" part. Again the proof is by induction on I T(S)I. Trees of 

cardinality No have such F. (It is easy to see, but just the same will be proved later 

in (3.4).) If I T(S)I is a singular cardinal and all its subtrees of smaller cardinality 

have such a function, then it follows from the compactness theorem that T(S) 
has. (The theorem will be proved for this particular ease later.) So we assume 

t T(S)I = A is regular, each subtree of smaller cardinality has such functions but 

there is no such F for all T(S). 
In this case, in each enumeration of the branches of T(s), {A, : a < A }, there is 

a stationary cut C _C A such that a E C implies Ao E c l (T , )  for some /3 => a 

(where T, = {A~:/3 < a} and its closure are the branches having unbounded 

intersection with its branches). As each branch is a countable subset of A 

(w.l.o.g. it is a tree of functions to A), for each As there is f ( a ) <  A bigger than 

all ordinals in A.. And there is D _C A closed and unbounded there such that 

a E D, /3 < a implies [(/3) < or. E = D CI C is stationary in A and staisfies: if 
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a E E, and 13 ~ A ,  and is not the last element there then/3 < a. Looking at the 

proof of lemma 3.4 in [2] we see that the following claim is actually proved there: 

If  there is no to1 path in T(S), T ( S ) =  {A,: a < A}, A regular, and there is a 

stationary C C_ ;t such that if a ~ C,/3 E A,  and is not the last there then/3 < a, 

then C can be separated into two disjoint stationary sets Co, C1 such that f E Co. 

g E C~ implies f < g. By Lemma 3.5 in this case (S, <)  cannot be represented as a 

union of No well orderings. A contradiction. 

THEOREM 2.2. Let T be a tree, I T I = )t a singular cardinal, and the height of T 

is smaller than A. If  every subtree of T whose cardinality is smaller than A has a 

function choosing disjoint final segments for its branches, then there is such a 
function for T. 

PROOF. One can prove the theorem by checking that if we define freeness for 

subtrees A, B,: " A / B  is free if there is such a function for A whose range does 

not intersect branches from B " ,  then this freeness satisfies the axioms of the 

compactness theorem. We give here a straightforward proof. 

First we divide the branches of T into cof)t disjoint sets each of cardinality 

less than A, T = Ui<oo~A Bi, where each B~ generates a subtree of T of cardinality 

less than A, so having a function FB, (choosing disjoint final segments for B,). We 

define P by F ( t ) =  FB,(t) for the B, such that t E B,. If ff were as desired 

Range(F)  would be a set of disjoint segments of branches, but there may be 

intersections between those segments so we have to improve F. Given a segment 

in Range(F)  each vertex in it belongs to at most co[ A other branches there. Let 

/~ be a cardinal smaller than A but not smaller than co[ A and the height of T, 

and let X~,) be the set of all branches in Range (F) intersecting t, then I X~ol _- </x. 

We define by induction (Xg): n < to): X~§ is the set of all branches of Range(F)  

intersecting a branch in X,. X~,)= U , X ~  n) is a subtree of Range(F),  its 

cardinality is less than A and every branch of X~) belongs to Xt~) and Range(F)  

intersecting a branch of X~,) belongs to X~,), and Range(F)  is divided into 

disjoint such subtrees, as s E XT, X'7 C XT§ hence X, _C X~. �9 �9 

Every such subtree X~,) has a function F(,) as needed and their union defines a 

"good"  function /~ for Range(F).  Let F(t) be P(t)fq/~(t)  and it will be the 

desired function for T. 

w Compactness in regular cardinals 

When we try to check compactness for regular cardinals we find that the 

situation is much more complicated. Most of the results are independent of ZFC 

and the axioms system for freeness that we used in the singular-cardinals case is 
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no longer sufficient as the behaviour (with respect to compactness in regular 

cardinals) of algebras satisfying these axioms may change from one algebra to 

another. In addition to this, not all regular cardinals behave the same when 

compactness for a given algebra is considered. The model (of set theory, of 

course) in which compactness is rarest is L - - t h e  constructible universe. In L 

(according to a theorem of Jensen [4]) every regular cardinal ;t which is not 

weakly compact has a subset S, stationary in it, such that for every limit ~ < A, 

S tq ~ is not stationary in c5. This incompactness property implies incompactness 

in A for many other algebras, see [6]. We will show that another property of L, 

the gap-one two-cardinal theorem for singular cardinals, implies another incom- 

pactness in successors of singular cardinals for the algebra we discussed in 

Theorem 2.2. This implication is due to A. Litman. 

On the other hand, assuming the existence of certain large cardinals, given 

almost any regular cardinal K, we can construct a model in which K will be 

compact for some of the above-mentioned algebras. This is done by collapsing a 

large cardinal to K in a way that preserves the compactness property of the large 

cardinal. (In this way we will get the independence with ZFC + GCH of the 

gap-one two-cardinal conjuncture for singular cardinals.) This is not surprising, 

as in L a given infinite algebra has as few as possible subalgebras, so it may 

happen that none of the small subalgebras reflects the situation in the given 

algebra, assuming the existence of large cardinals, and collapsing them gives us a 

model "very rich" with subsets and thus changes the pricture. 

1. Compactness above the continuum 

THEOREM 3.1. If  the existence of a super-compact cardinal is consistent with 

ZFC, then it is also consistent with Z F C  that every algebra satisfying the axioms, 

which is 2"~ is free. 

PROOF. A super-compact cardinal is a cardinal K such that for every A =< K 

there exists a normal K-complete ultrafilter on P,(A). It follows that for every 

model (M, E, R1 , . - . ,  R,),<~<, and every n there is an elementary submodel of it 

(M', E , . . . ,  R~, M '  , . .  �9 ) satisfying the same n-order sentences, with parameters, 

and a E IM'I, M ~  la l <  K, b E a implies b E IM' I. Thus every K-free algebra is 

free. We will blow 2 -0 to K using Levi's forcing, and show that this property of K 

remains valid in the new model we get. 

CLAZM 3.2. I r A  = I..J,<~ A~, a is a regular cardinal, (A ,  : a < A) is increasing 

and continuous, I A .  I < X for every a, and A is a free, then A B is not free iff there 

is a stationary S C_ h such that a E S implies A,§ t.J B is not free. 
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This is a simple consequence of Claim 1.2 and Axiom I. 

The model. Let r be a super-compact in V. P is the set of finite functions from 

K x to to {0, 1}. P satisfies the C.C.C. thus for G generic in P (over V) every 

cardinal of V is also a cardinal of V[g], and V[g] ~= 2 No = r. 

CLAIM 3.3. In V[G ] every algebra (which satisfies axioms) which is 2"~ 
is free. 

P~OOF. Assume this is not true. Let A be an algebra of minimal cardinality 

satisfying on B : A / B  is T'~ but not free. Let I A I = A. We represent A as 

U a<~ Aa, continuous and increasing, and IAa I<  A. By the minimality of lA I we 

get that A / B  is 2~oofree but not free, so by the compactness theorem for singular 

cardinals A is regular. By Claim 3.2 we get a stationary set S C_ A such that a E S 

implies Aa§ O B is not free. By the minimality of [A [, A~+~/Aa U B is not 

2"o-free, so let B,, C_ Ao+t be such that IB~ l < 2"~ and B~/A~ U B is not free. Let 

us work in V. Let N be the model (H<~§ the set P, S, (fi.~ : i < A ), (/~a: ot < h ), M 

and all its functions and relations, and Skolem functions for it) (S, 2{~,/~ are 

names in V for these elements of V[G]). (H<A§ is the collection of all sets in V 

of hereditary cardinality less than A+.) As r is super-compact there is a model 

M < N satisfying the same second order sentences that N does, and if a E I M I, 

I a I < K then a C_ [ M I- Let *r be an isomorphism of M to a transitive m o d e l / ~ ;  

for a ~ IMI with transitive closer of cardinality less than K , r ( a ) =  a, so in 

particular for every p E P zr(p)---p. Let ~. be ,r(A), " t M t  = ,~ is a regular 

cardinal",/~r also satisfies "every set of cardinality less than )~ is an element",  so 

by the transitivity of/~r we get that A is a regular cardinal in V. By the C.C.C. of 

P we can choose for every Ba a maximal set of pairwise incompatible conditions 

describing it of cardinality _-< I B~ I + No which is less than r, so w.l.o.g, we can 

assume each Bo has a name/~a of cardinality less than r (so 1r(/~a) = / ~ ) .  We 

decompose the forcing into two steps: first we use only P n M as the set of 

forcing conditions and G n P n M as the generic set over it, and then we work 

in V[G O P O M] with P - M and G O (P - M) as a generic set over it. It is well 

known that the model we get after these two steps is V[G]. As M with P n M is 

an elementary (in second order logic) submodel of H<~§ with P in/~r[G O P O 

M] =/Mr[G], lr(S) will become a stationary subset of A. Let us denote it S ~, 

,r(,4) will become an unfree algebra A ~ = O , < x A ~  and l E S '~ will imply 

B~/A2  is not free. As every set in/~r(G) of cardinality less than )~ has a name 

of cardinality less than )~, it is true in/~r(G) that every set of cardinality less than 

is an element, so S ~ is a stationary subset of ,~ and the algebras are not free in 

V[G n M n P] as well. No completes the forcing to get V[G], as zr(/~o) = / ~  ; it 
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becomes the algebra B, in M[G] and in V[G]. r ~) defines an algebra on 

A AIM I (for every function f is the algebra and ti E AIM I there are ~- E A n 

IMI and p E P forcing f(zr~ (ti)) = (r and as M is elementary submodel and r 

isomorphism p = r ) = c): A n IMI = r ~) = U,<~zr-lcr-Z(A'~) and 

S '~ is a stationary subset of A in V[G] by the C.C.C. for P n IMI) and for 

a E S ~, r is not free, so by the first claim A n IMI = A n IMI is 

not free, contradicting the 2 ,~ freeness of A (it is an intersection of A with an 

elementary submodel of M as we had Skolem functions for M our model). 

REMARK. If fact we proved the theorem for any notion of freeness that can 

be expressed in an n-order sentence with less than r parameters, and for which 

non-freeness is not destroyed by blowing 2 ,0 to r. 

II. Compactness in i �9 ++ and the two cardinal conjecture 

In this section we show that if the existence of a compact cardinal is consistent 

with ZFC § GCH then it is also consistent with ZFC + GCH for algebra A (g): 

freeness in g ++ implies freeness. 

On the other hand, we show that for singular A if every first order sentence 

which has (N~, N0) model has a (A +, A ) model then there is an algebra A (cof A) 

which is A-free but not free. In particular this shows the independence of the 

well known conjecture " ( ~ , N 0 ) ~  (A +,A) for singular A" with ZFC+ GCH 

assuming, of course, that "ZFC + GCH + there exists a compact cardinal" is 

consistent. (Jensen showed that in V = L this two cardinal conjecture holds.) 

DEFINmON. An algebra in A (/z) will be a tree in which every maximal 

branch is of height/z. For such trees, A, B, A / B  will be free if there is a function 

F assigning to every branch of A -  B a final segment of it such that for 

incomparable branches they are disjoint and no segment in Range(F) intersects 

a branch of B. (This is the algebra mentioned in w above.) 

THEOREM 3.4 (Ami Litman). I f  every first order sentence (with a distin- 

guished predicate p) that has an (N~,tto) model has a (A*,A) model and A is 

singular, then there is an algebra in A (col A) which is A +-free but not free. 

PROOF. First note that in A (No) there is an M,-free non-free algebra. Simply 

take N, branches of the tree of increasing sequences of natural numbers (ordered 

by inclusion). As there are N~ branches and only No proper intitial segments of 

them it is clear we can't choose for every branch a final segment so that these 

segments will be pairwise disjoint. On the other hand, given any set of No 

branches {a,: i < to} we can define a function F as needed by induction of i ; 
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coming to define F(a,+,) there are only i branches we must avoid and as a,+l is 

infinite it can be done. 

Let L be a first order language with a distinguished one place predicate 

symbol P, with E,  a two place predicate <,  and function symbols F1, F2, F3. 

will say: 

(1) V y V ~ ( V x ( x E  Y~-->xEZ)--->y = z ) .  

(2) < is a linear order of the model. 

(3) For every x, Fdx ) is a subset of P ( =  {x:P(x)}) cofinal in it. 

(4) For every y, F2(x,y) is a function from {x:x < y } ,  F2(x,y) is a final 

segment of G(x)  and for x,z  < y ,  x / z ,  F2(x,y)AFffz ,  y ) = O .  

(5) F3(y, t) is a one one function from P on a cofinal subset of Fl(y)  which is 

order preserving. 

It is easy to see that in a tree of N1 increasing sequences of natural numbers F~, 

F2, F3 can be interpreted so that it will become an (~,, I%) model of ~ (P will, of 

course, be the natural numbers).  

Let M be a (A*,A) model for ~. First we show that cof{x:P(x)} (in M)  is 

<cofA.  We know that [{x:P(x)} I = A  so let { A , : i < c o f A }  be an increasing 

sequence of subsets of {x : P(x)} such that for every i I A, I < A, and P = t_J A ,  As 

every F,(x) is cofinal in P, if c o f P #  cof~, for every x there is ix such that 

F,(x)NA,~ is cofinal in P, so there exists io such that for A § elements x 

F~(x) N A,, is cofinal in P. Let y be such that A of these A § elements are smaller 

than y. Now for every such x there is an element of G(x)71A~, bigger than 

F2(x, y) and for different x ' s  these elements are different (by part (4) of ~),  so 

there are A elements in A,,, contradiction. Now we take a cofinal sequence P of 

length colA, a~ (a < c f A ) ,  and to each x we attach the sequence (Fffx, a,): 
a < cof A). 

The tree of all initial segments of those sequences (ordered by inclusion) will 

give us the desired algebra. Fz assures the existence of the function F for every 

set of less than A § branches and F3 assures that there are only A proper  intial 

segments of branches, so there cannot be such a function F for all the A + 

branches together. 

THEOREM 3.5. If "ZFC + (GCH) + there exists a compact cardinal" is con- 

sistent, then for every # so is "ZFC + (GCH) + An  algebra in A (i.t ) which is i ~ § 

free, is free". 

REMARK. We can do it for any /z, and even for many p.'s together. In our 

model we thus get it for A (# ' ) ,  /~ '< /z .  

PROOF. We start with a model of ZFC in which there is a compact  cardinal r. 
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By Levi 's  conditions we collapse it to /z  ++ and then we show, as in [2], that the 

new model has the desired property.  

First note that if K is a compact  cardinal a n d / t  < K then every K-free algebra 

in A (bt) is free. This follows from the definition of a compact  cardinal by the 

compactness property for L , .  (Using a language with individual constants for 

every branch and vertex in the tree, we can give a complete  description of the 

tree in L~. Let T be the theory describing the tree and saying that F is a function 

showing its freeness. The freeness of the tree assures every subtheory of 

cardinality less than K has a model, so T has a model and we can build F for our 

tree from the F we get in this model.) So it is enough to deal wi th/z  such that 
+ +  

t �9 < K .  

It is easy to check that our algebras satisfy axioms I I - I V  and VI, VII  so we can 

use Claim 0.2. We need a little more: 

CLAIM 3.6. Let  A be a regular cardinal > I~. Let  A be a A-free algebra in 

A (tz), I A I = X. Given an enumeration of its branches (A, : i < A ), A is free iff 

there is no stationary C C A such that for a E C there is an i >- a such that A,  is in 

(Aj : j < a)  (i.e. for every vertex in A,  there is a branch A~, [3 < a, containing it). 

PROOF OF THE CLAIM. Let T~ be {A~: i < re}. If A is free then by Claim 0.2 

there is a closed and unbounded S C A such that for i~, j E S, i < j, Tj/T~ is free. 

If there is such C then C fq S #  Q and for i @ C A S there is an a > i such that 

A~ E T, ; taking j ~ S, j < cr we see that Tj/T, is not free, a contradiction. If A is 

not free, then there is no closed and unbounded S C A such that for ct E S, A / T ~  

is A-free, for if there were such a set we could define a freeness function F for A 

by stages on the intervals defined by the elements of S (taking unions at limit 

points), so there is a stationary C C {d: A / T ~  is not A-free}. For a E C there is 

_C A, I TI < A such that R / T ,  is not free, as A is A-free 7 ~ is free, and if every 

branch in "F-  "F~ had a final segment disjoined to all branches of T,, we could 

build a freeness function for 7"~To by intersecting the freeness function for 

with those final segments, so necessarily there is an Ao ~ t ( T - T , , ) f 3  T,,, as 

A~ ~ T~, [3 _-< a so C is the desired stationary set. 

The forcing. Let m be a countable transitive model of " Z F C  + there exists a 

compact  cardinal" and let K be such a cardinal in m. 

We define M. Levi 's  conditions to collapsing r to # §247 (That is: Let K be the 

set of regular cardinals greater  than/x § and smaller than K. A condition p will be 

a function from a subset of r x /x  § with cardinality smaller than /.L § to K such 

that for every (a, fl) in its domain p(ct, f l ) < a ;  P is ordered by functions 

inclusion.) 
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It is known that P is /~+-eomplete, and satisfies the KC.C. From the 

/z +-completeness we know that cardinals smaller than ~ ++ in m remain cardinals 

in m [G].  The K C.C. assures cardinals not smaller than K remain cardinals, and 

every closed and unbounded set of K in m [G]  contains a closed and unbounded 

set of K belonging to m. (In particular stationary sets of K in m remain stationary 

in m[Gl.) 
Another  important  property of this forcing is that [or every regular cardinal ~,, 

/~ + < )t < K, if P, is the set of conditions whose domain is a subset of )t x / z  + and 

p*, the set of conditions whose domain is a subset of ( K - ; t ) x #  +, then 

P = P, x P* ; and if G is generic for P over  m then G n P, is generic for P, over 

m, G rl P"  is generic for P"  over  m [G n P,]  and m [G]  = m [G Cl P,][G Cl P"]. 

THE MAIN CLAXM 3.7. m[G]l="every A E A(tz ) such that IA I = / x  ++ and 

A is ~ ++-free, is free" 

PRooF or  THE CLAIM. W.l.o.g. we can assume A is a tree of increasing 

sequences of ordinals smaller than K ( =  tz +~) ordered by inclusion. Let 

(A,:i  < t z  ++) be a fixed enumerat ion of the branches of the tree and let 

T: K x/x  --> K the function defining the tree, i.e. T(a ,  i) is the vertex of Ao. If A 

is not free we know by Claim 3.2 that there is an C _C K stationary there such that 

~ C - o  there is an i = a such that A, E T,~; we can enumera te  the tree such 

that it is a. 

We work in m. Let C be a name for C and T a name for T. For every pair 

(a, i) let X~, be a maximal set of pairwise incompatible conditions each of them 

forcing a value for T(~ , i ) .  Let X~ be I..)~<,.X,., by the KC.C. for every ~, 

I X~ J < K. Let f(,,) be an ordinal such that p ~ X,, implies p E P~<~) and if there is 

an i < tx such that p I"T(oL, i) = /3" then /3 < f(e~). Let D be the closed and 

unbounded set in ~< such that c~ E D and /3 <o~ implies f ( / 3 ) <  a. 

We consider the model (R<,), ~, D, T, C, P, po), where po is "7" is a /x  ++-free, 

non-free algebra in A( /x)" ,  C is a binary relation on P x On, (p, ~ ) ~  C if[ 

p I ~ - a E C ,  and 7" is a four place relation on P x O n  3, (p,a,/3, y , ) E T  if[ 

p i~ ~ ( ~ , / 3 )  = % 
The following sentence is a ~r t,-sentence satisfied in this model: D is closed and 

unbounded in K, for every set E. If E is closed and unbounded in K then there 

exists q extending pit and an ordinal cr such that q It-"a E (~ fq E " .  As i< is 

compact,  it is 7r't-indescribable so there exists a strongly inaccessible )t < K such 

that (P(~),E, D A A ,  C f q ( p X A ) , T N ( t g A A  x/x xX))  is an elementary sub- 

model of the above model and satisfies this sentence. 

CLArM 3.8. T~ = { A , : a < A }  belongs to m[GfqP~] and is not free there. 



52 S. BEN-DAVID Israel J. Math. 

PROOF. As  D n A is u n b o u n d e d  in A and D is closed, A E D so for  every  

t~ E R(~), X~ _C P,, as G is gener ic  for  every  a < A, i < / z  there  exists a unique 

q E X ~ , A G  forcing a value for  T ( a , i ) ,  q E G A P ~  so every  A~, a < A  is 

def inable  in re [GAP,] ,  T, E m [ G A P , ] .  C A A = { a < A : 3 q E G D P ^ ,  

q II-a E C} so it also be longs  to m[G DPA] and it is s ta t ionary  there  (by the  

7r't-sentence, and the fact that  sets s ta t ionary  in A in m remain  such sets in 

m[G n P~]). a E C :ff A~ E T~ so T~ is not free in m[G OP~] .  

CLAIM 3.9. T~ is not free in m [G] .  

In o rde r  to p rove  this, note  that  in m [ G n P ~ ]  A = / x  §247 and as P~ is 

g++-comple te ,  no sets of cardinal i ty  smal ler  than/ . t  § are in m[G n PA]-m so if 

we define Levi ' s  condi t ions  to col lapse K to /z §247 in m [ G A P , ]  we get 

e n - x § 
So it is enough  to p rove  

LEMMA 3.10. Let m be a model in which A is a regular cardinal, T =  

{A~ : a < A } an algebra in A (i ~ ), ~ < A, and C C_ A is stationary there such that 

a E C ~ A~ E 7"~, then forcing above m by a ~ *-complete set of conditions will 

not make T free. 

PROOF OF THE LEMMA. Let  p0 force that  _~ is a f reeness  funct ion of T. We  

at tach a condi t ion p~ to every ver tex 77 E T such that p ,  > p,,, and 77' > r/ (in T)  

implies  p,, _>- p~, and p~ IF "r/ is not the first e l ement  in any ,~(r/ ' )"  o r p ,  IF "r/ is the 

first e l emen t  in F(Ar(,~)" where  f ( r / )  is an ordinal  smal ler  than A. This is possible 

as the height  of every  branch is /.t and the union of an increasing chain of 

/z-condi t ions  is still a condit ion,  so in every s tep we have  to extend one condit ion 

only. As  c o f h  > / z  for  every  branch B the set o f f ( r / )  for  r/ E D is bounded ,  so 

there  exists a closed and u n b o u n d e d  set D CA such that a E D ::), if r/ ~ A~ for 

/3 < a then f ( r / ) <  a. Let  77 E D n C, p, = U ..... ,,p,,. p~ is a condit ion extending 

p,,, but  po forced F is a f reeness  function,  where  p, forces F(A , )  cannot  be 

def ined as needed.  So there  is no p,, forcing T is free, and T is not free in m [G] .  

CONCLUSION. In m[G] A is no! # " - f r e e  because  in m[G] T, C A IT ,  I< 

/z §247 and T, is not free. So we got :~ contradic t ion and finish the p roof  of Main 

Cla im 3.7. 

TrtE FINAL CLAIM 3.11. m[G]k"every  A E A ( # )  which is tz++-free is 

free ". 

PROOF. Let  A be~uch  an algebra.  We d e c o m p o s e  it to K trees  each of which 

be longs  to m, as follows: To  every  p E G let Tp be the  suba lgebra  of  that  p 
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which already forces what it will be. First note that for every p, T, is free in 

m[G] because: If I T o l < / x  §247 it is free by the ~ '* - f r eeness  of p, otherwise 

I Tpl_- < K; by the compactness of r if To is not free in m it has a subtree of 

cardinality smaller than K which is not free in m. Such a subtree with a minimal 

cardinality will still be non-free in re[G] (by the lemma) contradicting the 

/x++-freeness of A. So T o is free in m and of course in re [G] .  

Now we build a freeness function for A. For every T, we choose a freeness 

function for it, Fp. We define a function F '  by well ordering the conditions and 

for every A branch B is p is the first condition in this order such that B ~ Fo, 

F'= Fp(B). Of course F '  must not be a good function but as there are only 

trees Tp and w.l.o.g, c o f ( A ) >  K we finish as in Theorem 2.2. 

A similar theorem for stationary sets 

THEOREM 3.12. If " Z F C  + there exists a weakly compact cardinal (super 

compact)" is consistent, then so is " ZFC + for every stationary set C in tz §247 whose 

elements have cofinality <-/X (for every stationary set C whose elements have 

cofinality <=/X ) there is a limit ~ </X ~+ such that C t~ ~ is stationary in ~" 

PROOF. The proof is very much like that of Theorem 3.5. We build the same 

model m[G]. We can also repeat  the first part of that proof  (building 

m [G t3 P~]) as all we used to get it was the weakly compactness of K. If we 

assume K is super compact  we can get such a model also for a stationary set in a 

cardinal bigger than K. 

To complete the proof, we have to show that by forcing with a set of 

conditions which is p, +-complete the set C remains stationary in A. (This is the 

analogue of Claim 3.9.) To show this we build a tree of increasing sequences of 

ordinals such that: 

(1) For every a ~ C there is a branch As whose ordinals converge to c~ and 

for every proper  initial segment of it there is another  branch in the tree 

containing it and converging to some /3 < a. 

(2) For every a < h there are less than A branches converging to it in the 

tree. 

(3) The height of every branch is not more than /~. 

(If for every a < h, a ~ < h then all the increasing/x-sequences in h form such 

a tree.) 

Let po be a condition forcing S is a name of a closed and unbounded subset of 

C and S fq C = 0 .  For every vertex r/ in the tree, we attach a condition p~ 

extending po and the conditions attached to vertices below it, such that if/3 is the 

ordinal in r/, p~ forces that an ordinal f ( / 3 )> /3  will be the first element of S 
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above /3~ by (2), and by lhe regularity of A there is a closed and unbounded 

D _C h such that for a C D and/3 in a branch converging to a limit smaller than 

a, f ( / 3 ) <  a. For a ~ D A C, taking As as described in (1), p,, = I..J,~a~p~ is a 

condition extending p,, but forcing a ~ S because for every/3 in A,,, f(/3) < a, so 

S is unbounded bleow a, and p,, forces it to be closed, a contradiction. 

w Related answers and problems 

4.1. In [2], problem 2 asks if it is provable in ZFC that there exists a set 

S C N  such that ISI = W~.I, s(f)= w~ for all f E  S, and for all S ' C S  if S'  is 

uncountable then so is {g C N:  for some f ~  S', g c f } .  

Let us remind the reader that N is the class of strictly increasing continuous 

functions from a successor countable ordinal to the ordinals, and for f E S, s(f)  is 

sup(Range f).  
We have a partial answer: In V =  L such a set S exists. This is an easy 

consequence of Theorem 3.4. 

4.2. In [1] a logic L(,,a) is introduced. This is the logic obtained from the usual 

first order  logic by allowing a second order quantifier "aaS" which means for a 

closed and unbounded set of countable sets s. 

Problem 9.3 asks: Does every (standard) model for L (aa) have an elementary 

(for this logic) submodel of cardinality NI? We show that the answer to this 

problem is independent of the axioms ZFC. 

(A) Assuming V = L there is a model for L(aa) that has no elementary 

submodel of cardinality ~ .  

The model will be (wz, < ,p) ,  where < is the order of the ordinals and p is a 

unary predicate such that {x : p(x)} is stationary in o~2; p(~) implies cof(x)  = w and 

for every a < o~2 {x : p (x) ^ x < a } is not stationary in a. By Jensen [4] such a set 

exists. Now, in this model the set of all countable subsets whose supremum 

belongs to {x:p(x)} is stationary (in the sense of L(aa)); this is a sentence of 

L(aa) which is not true in any elementary submodel of cardinality N,. 

(B) Assuming the existence of a supercompact cardinal, we get, just like in 

Theorem 3.12, a model of ZFC in which every model for L(aa) does have an 

elementary submodel of cardinality < N1. 

4.3. In [6] Shelah shows that assuming V = L for every regular/z < A, h is 

not weakly compact. There is a graph (3 of cardinality A such that every 

subgraph of it of smaller cardinality has a colouring number < / z  but G does not. 

We show this incompactness result applies also to directing numbers of graphs 

by showing: 
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THEOREM 4.3. Let  G be a graph and ~7 a cardinal. Then  G has colouring 

number  <= r I iff it has a directing number  < rl. 

PROOF. Recall that G has colouring number _-< ~ if there is a well ordering < 

of its set of vertices such that {1 b < a: b ~ G(a ,  b) is an edge of G} I < , / f o r  each 

a E G .  

G has a directing number  -< 17 if its edges can be directed such that the 

number of edges going from each vertex is smaller than /~. 

It is clear that if G has colouring number =< 71 so is also its directing number; 

one simply sets every edge to go from the high vertex to the small one. 

The other direction is proved by induction on [G 1. If [ G [ _-< 7/ there  is nothing 

to prove. If [GI = h > r/ we can represent G as [-J~<~Gi such that for each i, 

[G~ [<  A, (Gi : i < A) is increasing, and if (after G is directed as assumed it can 

be) from a ~ G, there is an edge going to b, b also belongs to G,. Now we well 

order G~ - (..Jj<~ Gj for each i < h such that its colouring number is _<- r; (using 

the induction hypothesis) and for a E G~, bli~ G, we define a < b. 

4.4. QUESTION. IS it consistent with ZFC that for every stationary subset S of 

N~+I there is a limit a < 1%+1 such that S n a is stationary in a ?  Note that by 

Theorem 3.12 it is true if {col ~t : a ~ S} is bounded below X, and by [4] it is not 

consistent with ZFC + V = L. 

4.5. QUESTION. IS it consistent with ZFC that there is a group of cardinality 

N,+I which is not free but every subgroup of it with smaller cardinality is free? 

REMARK. It seems that the two questions are closely related one to the other. 
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A d d e d  in proof. For the cases where A x  I* holds, Shelah has found a much 

shorter proof for the compactness theorem; for the singular case see [9]. 
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